COCOVENIEnT

COmplete Vehicle ENergy-saving Technologies

Brussels (Belgium)

31 May 2017
SP A1 - IVECO Truck

COnVENIEnT COmplete Vehicle ENergy-saving Technologies

SP A1 (IVECO)
 Prototype Truck 1

WP A1.8 (IVECO)
Hybrid transmission integration

WP A1.9 (IVECO)
Prototype Truck 1 build-up \& calibration

जOOM ENiet Complete Vehicle ENergy-saving Technologies

WP A1.4 Active \& Passive Aerodynamics

Objectives

- Reduce the aerodynamic drag of radiators by developing active shutters for the front radiator grill
- Reduce the aerodynamic drag of wheels by developing systems of the flow around the wheel arches
- Develop other active and passive means, to optimize the aerodynamics between the cabin and the trailer
- Optimize the aerodynamics devices for the semitrailer, integrated by IAM

जSOME CNien Complete Vehicle ENergy-saving Technologies

WP A1.4 Active \& Passive Aerodynamics

FRONT ACTIVE SHUTTER

The front shutters open only when the ICE needs to be cooled, otherwise remaining closed to improve the aerodynamics and fuel efficiency.

CFD simulations (using STAR-CMM+ tool) have been performed to find the best trade-off between engine cooling and drag reduction, considering different solutions for complete or partial closing of front grills; scope of CFD calculations was to optimize the pressure distribution around the frontend of the tractor.

जCOM ENJet Complete Vehicle ENergy-saving Technologies

AGS - CFD simulations

CFD aerodynamic simulations of Active Grille Shutters have been completed. Simulation results show that AGS in closed position give about 5\% reduction of Cx.

COnVENienT COmplete Vehicle ENergy-saving Technologies

AGS - feasibility study

AGS lower-top module

AGS lower-bottom module

A feasibility study of Active Grille Shutters has been performed, including packaging/installation study .The AGS system has resulted to be a quite promising solution for reducing the aerodynamic drag coefficient in the front part of the vehicle.

AGS - System Prototyping and test

TEST	Results		NOTES
On road coast down test	$\mathbf{- 2 . 5 \%}$	$\Delta \mathrm{Cx}$	On-road testing results.
On road fuel consumption test @ constant speed $=$ $80 \mathrm{~km} / \mathrm{h}$	$\mathbf{- 0 , 7 \%}$	Fuel consumption	On-road testing results.

COnVENienT COmplete Vehicle ENergy-saving Technologies

WP A1.4 Active \& Passive Aerodynamics

Bumper \& Door Extension

A new geometry, featuring a more rounded corner and a channel to guide air flow plus a door extension, has been designed in order to reduce the frontal separation area.

The flow is further supported with an extended dam.

COnVENienT COmplete Vehicle ENergy-saving Technologies

WP A1.4 Active \& Passive Aerodynamics

The flow lines confirm that near the front bumper corner the flow remains relatively attached to the external surface.

The blue image illustrates how the more rounded corner and the channel, together with the extended door, induce the flow to move closer to the surface.

COnVENienT COmplete Vehicle ENergy-saving Technologies

WP A1.4 Active \& Passive Aerodynamics

Bumper \& Door Extension

TEST	Results		NOTES
On road coast down test	$-4,3 \%$	$\Delta \mathrm{Cx}$	On-road testing results.
On road fuel consumption test @ constant speed $=80 \mathrm{~km} / \mathrm{h}$	$-1,5 \%$	Fuel consumption	On-road testing results.

COnVENienT COmplete Vehicle ENergy-saving Technologies

WP A1.4 Active \& Passive Aerodynamics

Trailer Aerokit

To drive the underbody flow in a more efficient way, a complete fairing geometry was selected. This geometry has been further optimized with a rear extractor and front guide.

COnVENienT COmplete Vehicle ENergy-saving Technologies

SemiTrailer Aerokit

The more rounded shape of the front bumper corner, add to the new channel and to the new door extension, contribute to reduce the

COnVENienT complete Vehicle ENergy-saving Technologies

Trailer Aerokit

COnVENienT COmplete Vehicle ENergy-saving Technologies

WP A1.4 Active \& Passive Aerodynamics

Trailer Aerokit

TEST	Results		NOTES
On road coast down test	$-8,0 \%$	$\Delta \mathrm{Cx}$	On-road results.
On road fuel consumption test @ constant speed $=80 \mathrm{~km} / \mathrm{h}$	$-2,0 \%$	Fuel consumption	On-road results.

COnVENienT COmplete Vehicle ENergy-saving Technologies

WP A1.8 Hybrid Transmission

HCU - Hybrid Control Unit.

The HCU implements the hybrid strategy by controlling the different sub-systems.

EM - Electric Machine

Controlled by the inverter, the EM works both as a generator during braking and as a motor during acceleration phases.

Gearbox

Managed by the HCU, the gearbox optimizes gear shifting according to the energy available.

Inverter.

The Inverter is the electronic power unit controls EM according to the HCU strategy.

DUAL ESS - Dual Energy Storage System
The Dual ESS supplies power and energy to the electric traction. It is based :

Supercap

The supercaps serve to meet the peak power needs in both drive and energy recovery phases.

Lithium Battery

The battery supplies the baseline energy requirements and part of the power for traction and the overnight mission.

जCOME ENJen Complete vehicle ENergy-Saving Technologies

WP A1.8 Hybrid Transmission Integration

The main objective of this work package is to integrate the hybrid transmission into the IVECO Stralis truck.

Task A1.8.1:

- ZF and CRF/IVECO have jointly defined the E/E architecture / hardware interface / content of provided functions \# completed
- ZF have started to adapt Function / Software for IVECO Stralis driveline \# completed

COnVENient COmplete Vehicle ENergy-saving Technologies

WP A1.1 Concept Analysis and Simulations

Task A1.1.1:

- ZF has provided technical data of the hybrid transmission, to allow CRF to model it \# completed

Task A1.1.2:

- ZF has provide the updated CAD model of TraXon Hybrid transmission, Inverter \& simplified battery (Continental) to IVECO \# completed

Co COnVENient COmplete Vehicle ENergy-saving Technologies
 IVECO
 WP A1.8 Hybrid Transmission Integration

Task A1.0.1:

- Hybrid Transmission virtual integration into IVECO Stralis truck
\# completed

जCOM ENJet Complete Vehicle ENergy-saving Technologies

WP A1.8 Hybrid Transmission Integration

The main objective of this work package is to integrate the hybrid transmission into the IVECO Stralis truck.

Task A1.8.1:

- Hybrid Transmission integration into the IVECO Stralis truck
- Definition of a wiring diagram to purchases the harness
- Initial operation of prototype vehicle and software troubleshooting
- Optimization and calibration of function software
\# done \# done \# done \# done

COnVENienT COmplete Vehicle ENergy-saving Technologies

WP A1.9 Prototype Truck 1 building-up and calibration

ロrenVENienT COmplete Vehicle ENergy-saving Technologies

IVECO

WP A1.9 Prototype Truck 1 building-up and calibration

ロrenVENienT COmplete Vehicle ENergy-saving Technologies

WP A1.9 Prototype Truck 1 building-up and calibration

ConVENienT COmplete Vehicle ENergy-saving Technologies

IVECO

WP A1.9 Prototype Truck 1 building-up and calibration

COnVENienT COmplete Vehicle ENergy-saving Technologies

 IVECO
WP A1.9 Prototype Truck 1 building-up and calibration

COnVENienT COmplete Vehicle ENergy-saving Technologies

IVECO

WP A1.9 Prototype Truck 1 building-up and calibration

	File	Amb. Temper. $\left[{ }^{\circ} \mathrm{C}\right]$	Time [sec]	Distance [km]	Average speed [km/h]	Average rpms
	N106	20	1796	37,2	74,62	1166
	N107	20	1796	37,2	74,61	1221
	N108	21	1859	37,2	72,02	1152
	N109	24	1805	37,2	74,20	1219
	N110	25	1791	37,2	74,80	1167
Highway	N111	26	1792	37,2	74,76	1161
	N112	25	1793	37,2	74,73	1214
	N113	23	1798	37,2	74,51	1216
	N114	26	1795	37,2	74,63	1155
	N115	29	1800	37,2	74,43	1210
	N116	29	1797	37,2	74,54	1195
	N117	25	1838	37,2	72,85	1216
	N118	26	1803	37,2	74,32	1157
Hybrid vehicle - DIESEL Mode	Average	24	1805	37,2	74,22	1216
HYBRID vehicle - Charge sustaining mode	Average	23	1811	37	74	1158
HYBRID vehicle - Charge depleting mode	Average	27	1797	37	75	1173

DIESEL	-
HYBRID - Charge sustaining	-0.5%
HYBRID - Charge depleting	-10%

COnVENienT COmplete Vehicle ENergy-saving Technologies

WP A1.2 - Predictive Eco-Driving System

Predictive Cruise Control definition:

it is an Advanced Cruise Control system evolved with the adoption of electronic horizon (E-Horizon platform).
By knowing the real time position of the vehicle via GPS, the system will look onto the topographical data of the route and intelligently control the vehicle speed to be followed which in turn results in terms of fuel savings.

COnVENient

COmplete Vehicle ENergy-saving Technologies

WP A1.2 Predictive Cruise Control simulation on Simplified Scenario

IVECO's Predictive Cruise Control has been deployed onto the vehicle model in the simulation environment. To make sure the strategy works in a desired way, we have applied a simplified mission consisting of an uphill, downhill and a flat road.

```
Predictive CC disabled
Predictive CC enabled
```

Before the increase in the gradient of the road, vehicle speed increases up to 7\% so that the vehicle can climb the hill without too much stress on the engine

Once the vehicle starts climbing the uphill, the vehicle speed decreases. When the vehicle speed falls below the set threshold, the system de-activates automatically

Once the vehicle descends down, the speed automatically increases due to its inertia. The increase in speed will be up to the defined threshold. Then the system de-activates automatically and the vehicle speed will be
controlled manually by the driver
Before the decrease in the gradient of the road, vehicle speed decreases up to 7\%

COnVENienT COmplete Vehicle ENergy-saving Technologies

Use case: Hybrid Vehicle with e-Powertrain (139 kW 1050 Nm EM + 26 kWh HV battery) Test cycle: ACEA Regional Delivery cycle with Italian legal speed limits

COnVENienT COmplete Vehicle ENergy-saving Technologies

Use case: Hybrid Vehicle with e-Powertrain (139 kW 1050 Nm EM + 26 kWh OPAC HV battery) Test cycle: ACEA Regional Delivery cycle

	Predictive Cruise Control	
	ACEA Regional Modified Cycle	ACEA Regional Cycle
Vehicle Type	[Max Speed - 80 kph]	[Max Speed - 85 kph]
Configuration	Fuel Consumption Reduction [\%]	Fuel Consumption Reduction [\%]
Hybrid Configuration Predictive CC - OFF	NIL	NIL
Hybrid Configuration Predictive CC -- ON	-4.0 \%	-4.3 \%

The fuel save has been achieved with a negligible time increase of $\mathbf{3 0}$ seconds.

