

### **SMART-LIC**

Smart & Compact Battery Cell Management System for Fully Electrical Vehicles

Jochen Langheim STMicroelectronics





### **Smart-LIC SUMMARY**

# Smart-LIC PROJECT

- BMS for Li-Batteries
- 36 months (+6)
- Started 01.05.2011

### **PARTNERS**

- STMicroelectronics project pilot
- 8 Partners

# FUNDING

- 5.7 M € project
- 3.5 M € funding





### **SMART-LIC Partners**

**STMicroelectronics** 

Berliner Nanotest und Design

Centro Ricerche Fiat

Technische Universität Chemnitz

Fraunhofer ENAS

Kemet Electronics Italia

**MICRO-Vett** 

**CONTI Temic Microelectronic** 





















### Objectives & benefits of 'smart-LIC'



### Objective 1: New system architecture

- BMS at cell level, monitoring & controlling of each individual cell, advanced balancing (active & passive)
- → improved performance (charging efficiency, lifetime)
- → reduced cost (simplification, SiP, cost-of-ownership)



### Objective 2: Battery state determination

- Implementation of Electrochemical Impedance Spectroscopy (EIS)
- In-cell measurement of U, I, EIS, T, P...
- → More accurate determination of SoC, SoH ...SoF





### Objectives & benefits of 'smart-LIC'



Objective 3: Communication vs. EMC

- Addressing & evaluating of wireless and wire based (electr./opt.) communication solutions (to central BMS)
- Consideration of shielding & EMC issues, caused by Signal and Power Integrity (SI/PI)



Objective 4: Packaging/system integration

- Reliable, secure & cost effective packaging of ECU (BMS module) for harsh environment
  - → finding of suitable material selection
- Integration of BMS module into Li-Ion cell





### Objectives & benefits of 'smart-LIC'



### Objective 5: Reliability/safety/plagiarism

- Consideration of reliability & lifetime issues from the beginning of development stage, new lifetime models
- Incorporated safety devices, isolating of individual cell
- Active cell identification & authentication (plagiarism protection)



### **Objective 6: Testing**

- Testing of packaged BMS module (active + passive)
- Demonstrating the functionality of 'smart-LIC' module
- Creating of novel combined testing methods
- Verification of developed lifetime models





# Hierachical structure of battery systems



| Performance improvement                                           | Optimum?         | Cost improvement           |
|-------------------------------------------------------------------|------------------|----------------------------|
|                                                                   | Management level |                            |
| (more accurate battery state determination, efficient balancing,) |                  | (reduced complexity, BOM,) |





# Project Smart-LIC: highlights

#### New system architecture:

- Distribution of BMS functionalities down to cell/macro-cell level
- Advanced balancing (passive + active)
- Consideration of wireless communication strategies between satellite and central BMS (vs. EMC issues)

### Improved battery state determination:

 Application of Electro-chemical Impedance Spectroscopy (EIS) for improved on-line determination of SoC, SoH & SoF

### **Packaging and Reliability:**

Reliable, secure & cost effective packaging of ECU (BMS module) for harsh environment by overmoulding

### 48V application:

Transfer of Smart-LIC results to 48V applications

#### **Electrical Field Distribution at XZ-Plane:**



EIS = f(SoC):



Moulded ECU with leadframe contacts:







### Exposure and controllability, ASIL determination

|          |                                                                                    | Exposure E * Controllability C |        |         |                         |                        |       |  |
|----------|------------------------------------------------------------------------------------|--------------------------------|--------|---------|-------------------------|------------------------|-------|--|
|          |                                                                                    | 1                              | 0.1    | 0.01    | 10E-3                   | 10E-4                  | 10E-5 |  |
| Severity | S1 - slight and<br>moderate injuries<br>(very low speeds)                          | ASIL B                         | ASIL A | QM      | QM                      | Vtos                   | QM    |  |
|          | S2 - serious,<br>including life-<br>threatening,<br>injuries, survival<br>probable | ASIL C                         | ASIL B | require | olution of<br>ements of | safety<br>ver the year | QM    |  |
|          | S3 - life-<br>threatening injuries<br>(survival uncertain)<br>or fatal injuries    | ASIL D                         | ASIL D | ASIL C  | ASIL B                  | ASIL A                 | QM    |  |





E3Car A 2010

SBLiMotive 2012

E3Car B 2009



# Example BMS (SMART-LIC) 10









# Vehicle Electrification is 100V becoming the new trend?



The road to EV is clear (also due to standardisation in power electronics)







Figure 4: 48V-BSG-System Topology

Example 48 V system (source: CONTINENTAL @ APE 2013)



Figure 1: Definition of static voltage-ranges





#### 14

### Consequences for SMART-LIC







## Project Smart-LIC: realization

#### 1st demonstrator - Smart-LIC macro cell:

- Sealed metal case containing 4 Li-ion cells being connected in series
- 14,4V, 20Ah, 288Wh (based on EiG NCM cells)
- Maximum current: 100A (5C)
- Dimensions: H=260, W=148, L=38 [mm]









### Power module: Main tasks

### Main tasks of power module:

- Safety switching, e.g. isolation of individual macro-cells in case of malfunction
- Active balancing between macro-cells
- Deactivation of macro-cell for 'Electrochemical Impedance Spectroscopy' analyses
- Shut down of the high-voltage of the battery to increase safety e.g. of the rescue team
- Realization of a 'Limp Home' functionality





based on DCB

substrate





### Power module: Reliability considerations 17

#### **Challenges:**

- Demand for high safety, low contact resistance  $\Rightarrow$  High relevance of reliability & lifetime
- Influence factors: temperature cycles, vibration, humidity, chemicals (electrolyte), ...

### Approach:

Overmoulding of whole BMS electronic module(s)



#### **Reliability assessment:**

- Combination of FE simulation and reliability testing
- SoA reliability testing: APCT → demand for combined testing (= passive TC + APCT + Vibration, ...)



#### **Comprehensive material** characterization for FE modeling:







## ST circuit development

- ASIC development together with industrial partner
- First silicon already in the market
- Second silicon: some optimisation based on SMART-LIC



#### Lithium ION Battery Management IC

#### Datasheet v1.0

#### Features

- 3 to 12 cell Li- Ion battery cell control & monitoring
- Passive balancing
  - External balancing switch for increased balancing currents
  - Integrated driver for external balancing switch
- Daisy chain vertical differential communications interface, stackable to 32 nodes



Body: 10 x 10 x 1.4mm





# **Summary & Conclusion**

Distribution of BMS functionalities down to (macro-)cell level brings ...

- Higher efficiency due to local control at (macro-)cell level
- Increased precision in determining SoC, SoH, and SoF due to implementation of a new cell / battery model based on electrochemical impedance spectroscopy (EIS)
- Increased safety so that cells can perform at maximum rating without thermal risks due to redundant sensors and HT joints
- Reduced cost of ownership for the end user due increase in battery lifetime caused by the smart battery management (if battery technology and market evolution is well considered)

### Next steps ...

- Proof of concept for power module functionalities (safety switching, balancing, ...)
- Proof of concepts for electronic / power module reliability improvement due to overmoulding by means of various (combined) APCTs







