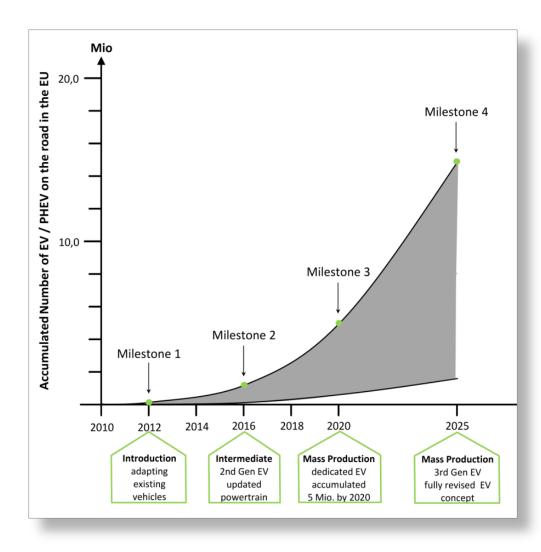
European Green Cars Initiative

Joint EC / European Green Cars Initiative PPP Expert Workshop 2013

Electric Vehicles Batteries: Moving from Research Towards Innovation

Günter Lugert, Siemens

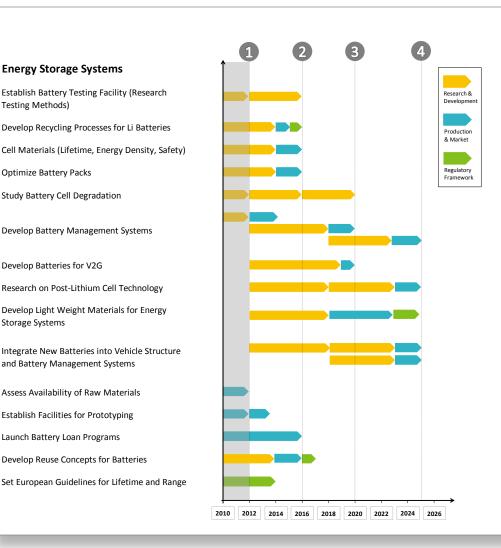
Guenter.Lugert@SIEMENS.de


Chair EPoSS Executive Committee / Vice Chairman EGVIA

Electrification Roadmap

In FP7 started

- Drafted by ERTRAC, Smart Systems and Smart Grids in 2009 (update 2012)
- Optimistic scenario requires batteries providing doubled life time and energy density at 30% of 2009 cost by 2020
- Also, a completely new vehicle E/E architecture, synergies from various technologies, and using full potential of ICT are needed



Focus Topic: Batteries

In FP7 started

- Implementation by the programs and on projects of the PPP European Green Cars Initiative (EGCI)
- Topics include: Materials, technologies and processes, manufacturing, nanotechnology, aging resistant batteries, battery management systems
- About 20 projects were launched

Workshop Today

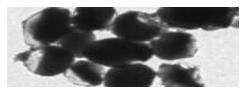
Objective:

Provide recommendations on research and innovation support activities in the framework of the European Green Vehicles Initiative PPP of Horizon 2020.

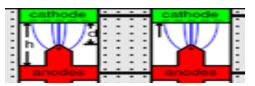
Agenda:

 report results of collaborative research projects on batteries

funded under the European Green Cars Initiative


- review relevant attempts for the implementation of prototype manufacturing and mass production in Europe
- discuss current European activities and policies for bridging the gap between research and innovation in the domain of batteries for the electric vehicle

Reports:


Minutes, slides and proceedings with project papers to be published

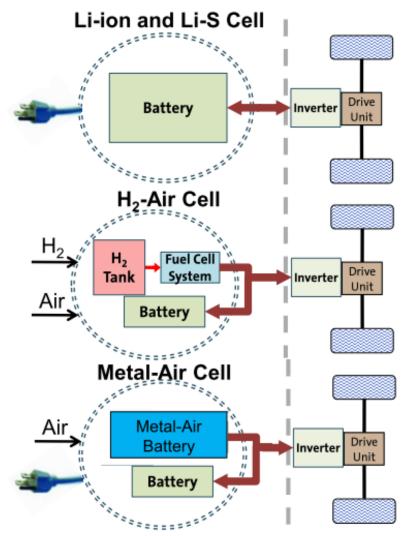
Redox-Flow-Batteries: enabling short recharge with reduced volume (VW)

Nanostructures increase lifetime and robustness (Stanford Uni)

Digital quantum baterry:: millions of nano-capacitors could have 10x LiO E-density (Theory)

	Current Li-ion	Optimistic Li-ion*	Optimistic Li-Sulfur*	Optimistic Li-Air*
Specific Energy Density - Wh(total)/kg (cell)	250	530	550	710
Specific Energy Density - Wh(total)/kg (system)	150	290	300	280
Energy Density - Wh(total)/liter(cell)	520	1050	620	760
Energy Density - Wh(total)/liter(system)	230	375	260	240
	*Assumes Li-Metal negative			

Benchmark LiO, LiS, LiAir



Questions

Evaluation & Benchmark of Electrification Approaches from a System Perspective

- How much will it weigh?
- Will it fit?
- How well does it accelerate?
- Will it start quickly from -30°C?
- Will it run well at 40°C?
- Will it last 150k miles (240k km) and 10 years?
- How fast can it refill?
- Is it safe?
- How much will it cost to buy and refuel the vehicle?

