Electric Vehicle Batteries: Moving from Research Towards Innovation

Knowledge Transfer from Research to Innovation

System Integration lan Faye

10th of April 2013 Brussels

Bosch E-Drive Activities

Drives for e-bikes

Electrical drives for passenger cars
Hybrids, Plug-in & EV

Hydraulic hybrid system & electrical drives for commercial vehicles

Battery: BBS

Starters and generators for Start/Stop Systems

ABS, ESP, Break-Booster

Navigation systems

Chargers for EV / PHEV

Charging stations for electric vehicles

Software for infrastructure integration

Research and predevelopment for future electrical vehicle concepts

System integration is more than putting components together in a vehicle

System Integration Powertrain

Battery Integration Involves Several Interfaces

- → Mechanical and Environmental
- → Electrical Power and Recuperation
- → Thermal Conditioning

→ Communication and Management

→ Safety Concept

Integration of one component affects interfaces of others

Optimize Battery PLUS Optimize Vehicle System

Optimization achieved through synergies between components **and** vehicle: Vision -> integrated components

Future Intelligence in System Integration

System optimization for Driving Range

	Current	Future
	State of Charge	Equivalent Circuit Model
	Cell Balancing	Active Cell Balancing
	Range estimation	 Scalability of Battery Energy Content
Batterie		

System optimization for Life-Time

	Current	Future
Batterie	Set-pointfixingBalancingThermal management	 Full capacity charging based on demand Uniform cell aging using battery management

Optimization achieved through synergies between components and SW

Volume Bundling

- → Anticipated development effort for cells and packs approximately 1,500 man years
- → As a result investment in development of approx. 150 m euros
- → With depreciation over 10 years and 8 % financing cost, cost amounts to 25 m euros/year and manufacturer

Integrated system must lead to weight, volume and cost reduction.

Key Messages

- System integration adds additional value to components
- Optimization must cover powertrain, communication and whole vehicle concept
- System integration must cover safety aspects
 - for the user
 - for the service technicians
 - for rescue forces in case of accidents

To maintain equivalent high safety levels as with today's conventional vehicles

- → Support standardization of non competition relevant products for "platform" concept
- Research is still needed in key areas:
 - solutions for product integration
 - reduced energy consumption of controls, as well as auxiliaries (heating/cooling)
 - pre-heating/cooling of passenger compartment and temperature sensitive components (like battery)
 - second life concepts, reliability and safety and recycling
 - standardized protocol of SOH for cells and modules
 - ensure safety level achievement incl. data communication

Thank you for your attention!

Gasoline Systems

