Moving from Research towards Innovation **April 10, 2013** ## Removal Battery Interfaces #### for Electric Vehicles Dr. Chanan Gabay, Jacques POILLOT Yoav Heichal #### **EASYBAT** **EU Call:** Transport (including Aeronautics) Call: FP7-SST-2010-RTD-1, GC.SST.2010.7-4. Smart storage integration Project full title: Models and generic interfaces for easy and safe Battery insertion and removal in electric vehicles. Project Coordinator: Dr. Chanan Gabay **Duration:** 30 Months (2011 - 2013) EC Contribution: 2,240,000 Euro #### The Solution: Standard Interface! - Mechanical interfaces - High voltage power interfaces - Thermal interfaces - Low voltage and data interfaces VEHICLE BSS #### **Battery Switching Station** #### **EASYBAT Main Objectives** - ➤ Develop **Generic Interface Concepts** to enable interoperability and interchangeability between the battery and the vehicle on-board systems. - > Suggest new **standards** to build a consistent regulation framework for the battery pack generic interfaces. - Assessment of EASYBAT's solution in terms of: - Cost, Logistics and Environmental impact #### 1st Step: Analysis Existing Solutions: - Electric vehicles suffer from short driving range performance, by switching the battery of the electric vehicle, its range can be extended. - A switchable battery pack that can be easily installed and removed into and out of the electric vehicle. - Two alternatives solutions today: #### **Active Solution** The **vehicle** plays an **active** role in **releasing/locking** the **mechanical** locks of the battery, while the BSS is not involved in this mechanical locking. # B50980 #### **Passive Solution** The **BSS** plays an **active** role in **releasing/locking** the **mechanical** locks of the battery, while the vehicle is not involved. #### 1st Step: Analysis Existing Solutions Ex.: Cabin Functionality - trunk volume - RR seats functionality | Req. | Requirement | Originating constraint | From | То | |------|--|---|----------|---------| | R1 | Battery location won't impact the trunk volume in coherence with market values of the vehicle segments | Cabin functionality – trunk volume | Customer | Battery | | R2 | Battery location won't impact the RR seats functionality compatible with hatchback, SW, MPV concepts | Cabin functionality – RR seats functionality | Customer | Battery | #### 2nd Step: Interface Requirements #### **Mechanical Interface Requirements:** - Secure the battery pack to vehicle body. - Aligning and preloading against the vehicle body. - **Generic:** the solution can be used for all EVs and all battery packs, and between the Battery Switch Station and any type of EV. - · Simple and cost effective. - Not sensitive to underbody contaminations. - Allows a fast switch process. #### **Thermal Interface:** While cooling by **air** solutions already **exist**, a study regarding **water cooling** is conducted within the EASYBAT project. The results are expected to include a technical and economical comparison to current air cooling solutions. #### 3rd Step: Architecture The 4 independent duplicated compliant mechanical interface modules: On board passive mechanism On board active mechanism 1 standard passive tool for all battery types and vehicle platforms 4 standard duplicated tools for <u>all</u> battery types and vehicle platforms 1 mechanism (standard interface) 1 standard tool for all battery types and vehicle platforms ### 4th Step: Development – Mechanical interfaces Mechanism #### **Electrical Interface** ## Data Interface: Battery Operation Cycle Management #### Main Purpose: Development of a system that monitors the battery during its whole operational **life and uses battery historic data** to estimate battery life (state of health), for best average life of all batteries. Battery Operation Cycle Management system (BOCM) Charging control Temperature control L___I L___I L___I Battery switch station Charging control Temperature control L___I L___I Battery switch station Charging control Temperature control L___I L___I Battery switch station State estimation BMS Battery cells Battery pack #### **Cooling Interface** By air By liquid #### Final Step: Demo & Workshop Agreements **EASYBAT Workshop Agreements** on "Switchable batteries for electric cars" 23 & 24 April 2013 Renault technical center, 1 avenue du Golf 78288 Guyancourt http://www.cenelec.eu/pls/apex/f?p=WEB:NEWSBODY:3417247645110363::NO::P300 NEWS ID:125 #### Thank You